

CMSC 201 – Computer Science I for Majors Page 1

CMSC 201 Fall 2017
Lab 04 – While Loops

Assignment: Lab 04 – While Loops
Due Date: During discussion, September 24th through September 28th
Value: 10 points (8 points during lab, 2 points for Pre Lab quiz)

In Lab 3, you used conditionals and simple decisions structures to control the
“flow” of a program. This week’s lab will put into practice some of the material
learned in class, including while loops and nesting decision structures.
(Having concepts explained in a new and different way can often lead to a
better understanding, so make sure to pay attention.)

CMSC 201 – Computer Science I for Majors Page 2

Part 1A: Review – While Loops

A while loop statement in the Python programming language repeatedly

executes a target statement as long as a given Boolean condition is True.

The syntax of a while loop in the Python programming language is:

while <condition>:

 <statement(s)>

Here, <statement(s)> may be a single statement or a block of

statements. The <condition> can be any expression, as long as it

evaluates to either True or False. (Remember, any non-zero value is seen

as "True" by Python.) The while loop continues to run as long as the

condition is still True. In other words, it runs while the condition is True.

As soon as the condition evaluates to False, program control passes to the

line of code immediately following the statements inside the while loop. This

is the first line of code after the while loop and its statements. It is indented

to the same depth as the "while <condition>:" line of code.

Remember that in Python, all the statements indented by the same number of
character spaces after while (or if, etc.) statements are considered to be

part of a single block of code. Python uses indentation as its method of
grouping statements.

CMSC 201 – Computer Science I for Majors Page 3

Figure1. A while loop in Python

while <condition>:

 <statement(s)>

Each time Python finishes executing the "<statement(s)>" inside the

while loop, it returns to and reevaluates the "<condition>". This helps it

decide: if the condition evaluates to True, it will execute the statements again;

if the condition evaluates to False, it will stop running the while loop.

It’s as if Python is asking itself “OK, I’m done – should I go again?” If the
condition always evaluates to True, the program gets stuck in an infinite

loop.

It is possible that a while loop might not ever run the "<statement(s)>"

inside the while loop. If the condition is tested and the result is False, the

loop body (the statements) will be skipped and the first line of code after the
while loop will be executed.

CMSC 201 – Computer Science I for Majors Page 4

Part 1B: Review – Interactive Loops

One of the major uses of a while loop is to interact with the user of the

program. Users are unpredictable, and we can't always rely on them to act in
the correct way, or to follow the rules or directions we give.

Our program may need to ask a user for something over and over and over
(and over and over) before it is satisfied. The user may be entering multiple
pieces of information, or they may be putting in invalid data (such as a negative
score on a quiz, or an email address with no "@" symbol in it).

Since we don't know how many times we'll have to reprompt the user, it makes
the most sense to use a while loop when interacting with the user in this

way.

The first type of interactive loop is one that verifies input from the user. In this
case, we continually reject the user's answer while it is unsatisfactory (in other
words, until it is satisfactory). The pseudocode for one of these loops might
look like this:

Ask the user for their input

While the input is not valid:

 Print out what sort of input IS valid

 Reprompt the user for new input

In an input-verifying loop, it is very important that you tell the user what is
unacceptable about their input, and how to fix it.

def main():

age = int(input("How old are you?"))

while age < 0:

 print("Please enter a positive age.")

 age = int(input("How old are you?"))

print("Happy", age, "th birthday!")

main()

CMSC 201 – Computer Science I for Majors Page 5

Part 2: Exercise

In this lab, you’ll be creating one file, temps.py, but you’ll be creating it in

three steps. That way, you can focus on each of the steps needed one by one.

By the time the temps.py program is complete, it will ask the user to enter

temperatures, and will keep track of the minimum and maximum values
entered.

Tasks

 Create a temps.py file

 Write the code to get a positive number from the user
 Run and test your temps.py file

 Write the code to get all the temperatures from the user
 Run and test your temps.py file

 Modify the code to store the minimum and maximum temperatures
 Run and test your temps.py file

 Show your work to your TA

CMSC 201 – Computer Science I for Majors Page 6

Part 3A: Creating Your File

First, create the lab04 folder using the mkdir command -- the folder needs

to be inside your Labs folder as well. (If you need a reminder of how to

create and navigate folders, try asking a classmate next to you for help. If
you’re both stuck, ask the TA or refer to the instructions for Lab 1.)

Next, create a Python file called temps.py using the “touch” command in

GL.
The “touch” command creates a new blank file, but doesn’t open it.

Once a file has been “touched”, you can open and edit it using emacs.
 touch temps.py

 emacs temps.py

The first thing you should do with any new Python file is create and fill out the
comment header block at the top of your file. Here is a template:

File: FILENAME.py

Author: YOUR NAME

Date: 2/TODAY/2017

Section: YOUR SECTION NUMBER

E-mail: USERNAME@umbc.edu

Description: YOUR DESCRIPTION GOES HERE AND HERE

YOUR DESCRIPTION CONTINUED SOME MORE

CMSC 201 – Computer Science I for Majors Page 7

Part 3B: Getting a Positive Number

This is the first of three steps that must be written for this lab.
This first step uses a simple while loop to get a positive number from the

user. If they enter a non-positive number (negative or zero), the program must
reprompt them until they enter a positive number.

The program you are writing will be used to find the minimum and maximum in
a list of temperatures. The first question we are asking the user is how many
temperatures they would like to enter.

Here is some sample output, with the user input in blue.
(Yours does not have to match this word for word, but it should be similar.)

bash-4.1$ python temps.py

How many temperatures would you like to enter? 0

You must enter a number greater than zero.

How many temperatures would you like to enter? -9

You must enter a number greater than zero.

How many temperatures would you like to enter? 4

Once this part of the program works correctly, move on to the next step.

CMSC 201 – Computer Science I for Majors Page 8

Part 3C: Getting the Temperatures

This is the second of three steps that must be written for this lab.
This second step will use another while loop to get the temperatures from

the user, and will keep asking for another temperature until the user enters as
many temperatures as they previously indicated. In other words, if the user
answered that they wanted to enter “4” temperatures, the program must ask for
four temperatures.

The program does not need to worry about the user entering negative
temperatures. It is perfectly valid to enter a negative temperature.

Here is some sample output, with the user input in blue.
(Yours does not have to match this word for word, but it should be similar.)

bash-4.1$ python temps.py

How many temperatures would you like to enter? 4

Enter a temperature: -273.15

Enter a temperature: 32.0

Enter a temperature: 98.6

Enter a temperature: 105.2

Once this part of the program works correctly, move on to the next step.

CMSC 201 – Computer Science I for Majors Page 9

Part 3D: Find the Minimum and Maximum

This is the last of three steps that must be written for this lab.
This last step requires that you use decision structures to determine the
minimum and maximum values that the user entered.

The best way to do this is to compare each new temperature as your program
receives it, to see if it is smaller than the minimum so far (or larger than the
maximum).

Think carefully about how and when to initialize your variables that will store
the minimum and maximum. If you set minimum to a starting value like
10000000, it’s still possible for the user to only enter numbers larger than that,
which means your minimum would be wrong!

(HINT: If you ask for the first temperature before the while loop starts, you can
use that value to initialize the minimum and maximum variables. Don’t initialize
them inside the while loop, since they’ll just get overwritten!)

Here is some sample output, with the user input in blue.
(Yours does not have to match this word for word, but it should be similar.)

bash-4.1$ python temps.py

How many temperatures would you like to enter? 6

Enter a temperature: -12.5

Enter a temperature: 98.6

Enter a temperature: 100.1

Enter a temperature: 72

Enter a temperature: 32

Enter a temperature: 88.3

The minimum temperature entered was -12.5

The maximum temperature entered was 100.1

CMSC 201 – Computer Science I for Majors Page 10

Part 4: Completing Your Lab

Since this is an in-person lab, you do not need to use the submit command to

complete your lab. Instead, raise your hand to let your TA know that you are
finished.

They will come over and check your work – they may ask you to run your
program for them, and they may also want to see your code. Once they’ve
checked your work, they’ll give you a score for the lab, and you are free to
leave.

Tasks

 Create a temps.py file

 Write the code to get a positive number from the user
 Run and test your temps.py file

 Write the code to get all the temperatures from the user
 Run and test your temps.py file

 Modify the code to store the minimum and maximum temperatures
 Run and test your temps.py file

 Show your work to your TA

IMPORTANT: If you leave the lab without the TA checking
your work, you will receive a zero for this week’s lab. Make
sure you have been given a grade before you leave!

